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Abstract—In this paper, a rather compact differential 

equation governing the bending behavior of a 

magneto-electro-elastic (MEE) rectangular thin plate is 

introduced, in particular, the exact solutions for the deformation 

response of laminated BaTiO3-CoFe2O4 composites subjected 

to certain types of surface loads are analytically obtained. Due to 

the omission of the transverse shear deformation and rotatory 

inertia assumed in Kirchhoff thin-plate theory, the governing 

equation can accordingly be expressed in terms of the transverse 

displacement only. As a result, the structural characteristics 

such as elastic displacements, electric potential and magnetic 

induction for a magneto-electro-elastic (MEE) rectangular plate 

can be carried out in a theoretical approach. For a laminate 

MEE composite, the material constants can be uniquely 

determined by the volume-fraction (v.f.) of the piezoelectric 

constituent BaTiO3, and are tabulated with 25% offset of the 

volume-fraction. According to the specified boundary conditions 

imposed on the MEE thin plate, the deformation variations with 

closed-circuit electric restriction are evaluated analytically in 

the present study. The results obtained in this paper by using the 

proposed model can be shown to have good agreements with the 

other available research works, however, with the advantage 

that the present study indeed provides a much simpler way in 

seeking the analytic solutions for the interactively coupled 

quantities of a layered MEE medium. 

 
Index Terms—Layered structures, Mechanical properties, 

Analytical modelling 

 

I. INTRODUCTION 

  It is well-known that structure made of piezoelectric 

materials can produce voltage when external stress is applied, 

nevertheless, it will also induce stress when voltage difference 

is implemented across the structure. Parallel to the 

piezoelectricity, piezomagnetizm can intrinsically be 

characterized by interactive couplings between system's 

magnetic polarization and mechanical strain, i.e., in a 

piezomagnetic medium, one may induce a spontaneous 

magnetic moment by applying physical stress, or reversely 

obtain a physical deformation by applying a magnetic field. 

Composites structures consist of layered piezoelectric and 

piezomagnetic components, which can be referred as one kind 

of the magneto-electro-elastic (MEE) material, possesses the 

ability to convert energy of magnetism, electricity or elasticity 

into another form. The MEE material also exhibits a specific 

magneto-electric effect which is not appeared in a 

single-phase piezoelectric or piezomagnetic material. 

Surprisingly, in some cases the magneto-electric effect of 

MEE composites can even be obtained two orders larger than 
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that of a single-phase magneto-electric material with highest 

magneto-electro coefficient [1]. Due to these multiphase 

properties, the MEE material have been found increasing 

applications in making efficient smart and intelligent 

structures such as magnetic field probes, electric packing, 

acoustic, hydrophones, medical ultrasonic imaging and so on. 

For the past few years, systematic investigations either in 

determining the material coefficient of such new type material 

or in analyzing the static or dynamic behavior under certain 

external conditions are vigorously proposed by many 

professional engineers and scientists. Li [2] studied the 

average magneto-electro-elastic fields in the multi-inclusion 

embedded in an infinite matrix, and estimated the effective 

magneto-electro-elastic moduli of piezoelectric- 

piezomagnetic composites for both BaTiO3 fiber reinforced 

CoFe2O4 and BaTiO3-CoFe2O4 laminate. It has been shown 

that the magneto-electro coupling demonstrated by 

magneto-electro coefficients vary with the volume faction of 

BaTiO3 and have opposite signs for fibrous and laminated 

composites, respectively. Pan [3] obtained the exact solution 

for three dimensional, anisotropic, linear 

magneto-electro-elastic, simply-supported and multilayered 

rectangular plates under static loadings. It is stated that even 

for relatively thin plate, responses from an internal load are 

quite different to those from a surface load. Chen et. al. [4] 

establish a micro-mechanical model to evaluate the effective 

properties of layered magneto-electro-elastic composites and 

the linear coupling effect between elasticity, electricity and 

magnetism of the MEE composite is accordingly derived. In 

their study, numerical results for a BaTiO3-CoFe2O4 

composite with 2-2connectitivi are obtained, and the 

dependences of magneto-electro-elastic coefficients, the 

so-called product properties, of the composite on the volume 

fraction of BaTiO3 are clearly depicted. Wang and Shen [5] 

extended their previous works on piezoelectric media to study 

the general solution of three-dimensional problems in 

transversely isotropic magneto-electro-elastic media through 

five newly introduced potential functions. Chen and Lee [6] 

simplified the governing equations of the linear theory for the 

magneto-electro-thermal-elastic plate with transverse 

isotropy by introducing two displacement functions and stress 

functions. In their study, two new state space equations are 

established while selecting certain physical quantities as the 

basic unknowns. Wang et. al. [7] performed a state vector 

formulation for the three dimensional, orthotropic and 

linearly magneto-electro-elastic multiple layered plate and 

expressed the basic unknowns by collecting not only the 

displacement, electric potential and magnetic potential but 

also some of the stresses, electric displacements, and 

magnetic induction. A boundary integral formulation for the 

plane problem of magneto-electro-elastic media are 

Exact solution for the bending deformations of 

layered magneto-electro-elastic laminates based on 

thin-plate formulation 

Mei-Feng Liu 



 

Exact solution for the bending deformations of layered magneto-electro-elastic laminates based on thin-plate 

formulation 

 

                                                                                              8                                                                      www.ijeas.org 

performed by Ding and Jiang [8] using strict differential 

operator theory. They obtained the fundamental solutions for 

an infinite MEE plane in terms of four harmonic functions 

which satisfied a set of reduced second order partial 

differential equation for distinct eigenvalues case. Guan and 

He [9] derived the fundamental equation for the plane 

problem of a transversely isotropic magneto-electro-elastic 

media by applying the Almansi’s theorem and expressed all 

physical quantities by four harmonic functions for distinct and 

non-distinct cases. 

In this study, a rather simple analytic solution for the 

deformations of the magneto-electro-elastic (MEE) 

rectangular plate under certain type of applied loads acting on 

the top surfaces are derived. By imposing the Kirchhoff 

thin-plate hypothesis on the plate constituent, the governing 

equation in terms of only the transverse displacement of the 

plate can be obtained and therefore a rather compact form 

indicating the multiple effects between elasticity, electricity 

and magnetism of the plate can be successfully presented. The 

MEE plate is chose to be made of the two-layered 

BaTiO3-CoFe2O4 laminate, which can be thought as a 

transversely isotropic magneto-electro-elastic medium and 

the material coefficients for such continuum can be expressed 

uniquely by introducing the volume-fraction of BaTiO3 in the 

layered composite. The corresponding deformation analysis 

regarding the elastic displacements, electric potential and 

magnetic induction of the MEE thin plate is evaluated through 

the formulation mentioned in this study. Some comparisons 

with previous literatures are made and great agreements are 

reached which directly validate the proposed simplification 

for the MEE modeling. 

II. FORMULATIONS 

For a Magneto-Electro-Elastic (MEE) thin plate made of 

two-layered BaTiO3-CoFe2O4 laminate, the fundamental 

Kirchhoff hypothesis for the small-deflection of simple 

bending problem can be applied, and thus the transverse shear 

deformations and rotary inertias can be neglected, also the 

transverse shear strains are negligible. In accordance with the 

assumptions that in-plane electric fields and magnetic fields in 

a very thin medium can be ignored [10], that is, only the 

transverse electric, 3E , and magnetic field, 3H , are under 

consideration, the following governing equation for the 

bending problem can be found [11] 

 4 4 4 ( , )D w E w M w P x y      , (1) 

where 
3
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thickness, 2
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elastic, dielectric, piezoelectric, piezomagnetic, 

magnetoelectric, and magnetic constants, respectively. It 

should be noted the relation 11 12 662c c c   for transversely 

isotropic material is adopted in the above equation. As it can 

be also learned from Ref. [11], the reduced extended traction 

vectors can be stated as follows, 
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. (4) 

Meanwhile, the following expression for the electric potential 

and magnetic potential can be derived, 

21
1( , )z w x y

z





   

 
, (5) 

22
1( , )z w x y

z





   

 
, (6) 

where 1( , )x y  and ( , )1 x y  represent the variations of 

electric field and magnetic field in the thickness direction 

while the plate is under deformation, and are both 

independent of z  variable. 

In seeking for the solution to Eq. (1), we can assume the 

following expression for the transverse deflection of the MEE 

plate, 

1 1

( , ) ( ) ( )mn m n

m n

w x y A X x Y y

 

 

 , (7) 

where ( )mX x  and ( )nY y  are the homogeneous solutions of 

Eq. (1) and can be determined according to the assigned 

boundary conditions. Some mode shapes and corresponding 

eigenvalues with respect to commonly seen boundary 

conditions are tabulated in Table 1 as a reference. It should be 

noted that the mode shapes ( )mX x  and ( )nY y  not only 

satisfy the corresponding boundary conditions but also 

possess the intrinsic orthogonality, i.e., we will have 

0
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and 

0
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0,
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n
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Y y Y y dy Y y
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

  
  

  
 , (9) 

where xL  and yL  denotes the plate lengths along x and y 

directions. After ( )mX x  and ( )nY y  are determined, we can 

further expand the applied load on the top surface of the plate 

into the generalized double Fourier series as 

1 1

( , ) ( ) ( )mn m n

m n

P x y p X x Y y

 

 

 , (10) 

in which the Fourier coefficient mnp  can be determined as 

follows 
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0 0

1
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( ) ( )

x yL L
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X x Y y

   . (11) 

By substituting Eq. (7) and Eq. (10) into Eq. (1) and 

collecting the constant term, we can have the following 

equation 

  4 2 2 42m m n n mn mnD E M A p        , (12) 

where m  and n  are the corresponding eigenvalues 

associated to the specific boundary conditions. Furthermore, 

the magnitude of the transverse deflection, mnA , can be 

determined, i.e., 

  4 2 2 42

mn
mn

m m n n

p
A

D E M    


   
. (13) 

Thus we have the exact solution for the transverse deflection 

due to applied load 
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and the exact solution for the mechanical displacements along 

x- and y- directions can be expressed as 

  4 2 2 4
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  4 2 2 4
1 1

-
( ) ( )

2

mn
m n

m n m m n n

pw
v z zX x Y y

y D E M    

 

 


  

    
  (16) 

 

Table 1: Mode shapes and the corresponding eigenvalues for 

specified boundary conditions 

 
As for the electric boundary conditions and magneto 

boundary conditions specified on the top and bottom surfaces 

of the plate, there are normally two kinds of cases to be 

discussed.  

Case I: Closed-circuit, i.e., ( , , / 2) 0x y h    and 

( , , / 2) 0x y h    

By carrying out the anti-derivatives for Eq. (5) and Eq. (6), we 

can have the following expressions for electric potential and 

magnetic potential as  

2 21
1 0( , , ) ( , ) ( , ) ( , )

2
x y z z w x y z x y x y  


    


  (17) 

2 22
1 0( , , ) ( , ) ( , ) ( , )

2
x y z z w x y z x y x y  


    


 (18) 

since ( , , / 2) 0 x y h   , after solving the above two 

equations, one can get 

1( , ) 0x y   and 2 21
0 ( , ) ( / 2) ( , )

2
x y h w x y


 


, 

thus the exact solution for the electric potential due to applied 

load can be expressed as 

2 2 2 21 1( , , ) ( , ) ( / 2) ( , )
2 2

x y z z w x y h w x y
 

    
 

. (19) 

By the same token, we can have the following exact solution 

for the magnetic potential due to applied load as 

2 2 2 22 2( , , ) ( , ) ( / 2) ( , )
2 2

x y z z w x y h w x y
 

    
 

. (20) 

Case II: Open-circuit, i.e., ( , , / 2) 0zD x y h   and 

( , , / 2) 0zB x y h   

Substituting Eqs. (5)-(6) and Eqs. (15)-(16) into Eqs. (3) and 

(4), the solutions for the electric displacement and magnetic 

induction in thickness direction can be expressed as 

21 2
31 33 33 33 1 33 1- - ( , ) - ( , )zD e d z w x y d x y   

  
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  
, (21) 
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    
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(22) 

therefore, the open-circuit conditions will lead to 

21 2
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  
      

  
(23) 

21 2
31 33 33 33 1 33 1( , , - / 2) - / 2 - ( , ) - ( , ) 0zD x y h e d h w x y d x y   
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  
(24) 

and  

21 2
31 33 33 33 1 33 1( , , / 2) ( / 2) - ( , ) - ( , ) 0zB x y h q d h w d x y x y   

  
      

  
(25) 

21 2
31 33 33 33 1 33 1( , , - / 2) - ( / 2) - ( , ) - ( , ) 0zB x y h q d h w d x y x y   

  
      

  
. (26) 

In viewing of Eq. (23) through Eq. (26), it can be found that 

these four equations cannot provide any information about 

determining the expressions for 1( , )x y  and 1( , )x y , nor 

for the terms ( , )0 x y  and 0 ( , )x y . This is because the 

variations of electric displacement and magnetic 

displacement along thickness direction are vanished under the 

proposed methodology, i.e., 0z zD B

z z

 
 

 
, therefore it is 

expected to see the linear dependency of these two quantities 

on the z variable. In that sense, open-circuit boundary will 

result in a trivial solution with the displacement components 

approaching to zero and makes the expressions of 1( , )x y  

and 1( , )x y  being negligible as can be detected from Eqs. 
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(21) and (22). As a result, two more boundary conditions will 

be needed in order to resolve the expressions for the terms 

( , )0 x y  and 0 ( , )x y . For that reason, in this study, we 

don’t specifically focus on the open-circuit case and only 

adopt the closed-circuit boundary condition as our numerical 

examples discussed in the next section.  

It should be noted that the in-plane electric fields and 

magnetic fields can be ignored if the plate thickness is very 

small (e.g. 10 xh L ), and only the transverse electric field, 

3E , and magnetic field, 3H , are related to the electric 

potential   and magnetic potential   in the follow form 

according to the Maxwell’s equations. 

21
1- - ( , )zE z w x y

z





  

 
,          (27) 

22
1- ( , )zH z w x y

z





   

 
,         (28) 

in which the terms 1( , )x y  and 1( , )x y  can be determined 

by considering the closed-circuit case on the plate surfaces. 

By substituting Eqs. (5)-(7) into Eq. (2), the stress 

distributions are respectively 

 

11 12

1 2
31 31

31 1 31 1
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- ( ) ( ) ( ) ( )
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   
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 

, (29) 

 

12 11

1 2
31 31

31 1 31 1

( , , ) - ( ) ( ) - ( ) ( )

- ( ) ( ) ( ) ( )

( , ) ( , )

y mn m n mn m n

mn m n m n

x y z c A zX x Y y c A zX x Y y

e q A z X x Y y X x Y y

e x y q x y



 
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  
   

  

 

, (30) 

66-2 ( ) ( )xy mn m nc A zX x Y y   .           (31) 

The above equations provide the analytic solutions to the 

physical quantities of a magneto-electro-elastic thin plate 

subjected to surface applied load and can be decided 

according to the transverse deflection ( , )w x y  and potential 

parameters ( , , )x y z  and ( , , )x y z . 

III. NUMERICAL DEMONSTRATIONS 

In this section, some examples based on the proposed 

model for the thin magneto-electro-elastic rectangular plate 

subjected to external loads and closed-circuit electric 

restrictions are presented. For the first a few examples, the 

author demonstrates some special cases which have been 

verified in previous research works in order to validate the 

present study and tell the differences with other available 

literatures. 

Mode shape validation. Since the mode shape 

corresponding to the free vibration of the MEE plate is of 

interest due to its importance on the nature and extent of the 

electro-magneto-mechanical coupling, we first check the 

validation of fundamental mode shapes for a piezoelectric 

square plate made of commonly used PZT4 material by 

utilizing the present model. In order to compare the results 

with those proposed by Heyliger & Saravanos [13], the 

dimensions of the plate are chosen to be / 01xL h  , x yL L  

and 0.01 mh  , and the boundary conditions are assumed to 

be simply-supported around four edges with closed-circuit on 

the top and bottom surfaces, i.e. 

( , , - / 2) ( , , - / 2) 0x y H x y H   . The thickness is 

normalized as /Z z H , the displacements and electric 

potential are normalized with respects to their own largest 

values along thickness direction, i.e., / max( )W w w , 

/ max( )U u u  and / max ( )u  . The normalized 

distributions for both the transverse and in-plane mode shapes 

along with the electric potential for a PZT4 square thin plate 

are depicted in Fig. 1, as we can detect from this figure, it is 

almost identical to Fig. 2(a) in the paper conducted by 

Heyliger & Saravanos [13]. Therefore, good agreement has 

been reached. 

 
Fig 1. Thickness distributions for a PZT4 thin plate with 

dimension / 01xL h  , x yL L  and 0.01 mh   subjected to 

simply-supported and closed-circuit boundary conditions. 

 

Example 1. The second example is an electro-elastic single 

layer rectangular plate made of purely piezoelectric BaTiO3. 

The length-to-thickness ratio and the width-to-thickness ratio 

are chosen to be / 10  xL H   and / 5  yL H   in order to 

match the dimension setting in the paper presented by Chen 

and Lee [6] although this doesn’t assure the thin-plate 

requirement to be satisfied. All the surfaces of the plate are 

assumed to be traction free except the bottom surface, on 

which a sinusoidal loading 

0 sin( / )sin( / )x yP n x L m y L     with amplitude 

2
0 1 / N m   and mode number 1m n   is applied. In 

particular, the deformation responses of the plate are 

calculated at the fixed horizontal coordinates 

0 0( , ) (0.75 ,0.25 )x yx y L L . Fig. 2(a)-(f) indicates the 

variations along thickness direction of the elastic 

displacements w , xu , yu , electric potential ( , , )x y z , 

magnetic potential ( , , )x y z , electric displacement zD  and 

magnetic displacement zB  for such a plate caused by a 

sinusoidal loading on the top surface with all edges 

simply-supported. As we can recognize from these figures, 

the shear deformation is linearly dependent on the transverse 

deformation and the electric potential reveals quadratic 

variation along z  coordinate. These two phenomena can be 

also found in both the papers studied by Pan [3] and Chen [6], 

see Fig. 1 and Fig. 2 in their studies respectively. It should be 

noted that the electric potential and magnetic potential in this 

case are identically zero due to the fact that 0z zD B

z z

 
 

 
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and close-circuit electric restriction is adopted in this paper 

instead of open-circuit one. 

 
Fig. 2. Variations along thickness direction of the elastic 

displacements, electric potential, magnetic potential, electric 

displacement and magnetic displacement for a single layer 

BaTiO3 plate caused by sinusoidal loading on the top surface 

with all edges simply-supported. 

 

Table 2. Material constants for both laminate and fibrous 

MEE multiphase composites, partially cited from Buchanan 

[12] 

 
Example 2. In this example, a two-layered 

magneto-electro-elastic plate made of equally-placed 

BaTiO3-CoFe2O4 laminate is then presented. The 

piezoelectric BaTiO3 is placed on the bottom layer 

( / 2 0H z   ) whereas the magnetostrictive CoFe2O4 is on 

the top layer ( 0 / 2z H  ), the material constants for this 

kind of MEE plate can be found in Table 2 with the 

volume-fraction set to be 50% for the lamination case. The 

dimensions are 1000 mxL  , 20 myL  , 1 mh  , 

/ 20 yS L h  , 1n   and the related physical quantities are 

normalized as follows with all of them still remain 

dimensional, 3/u S , 3/v S , 4100/w S , 
2/xx S , 2/yy S , 

2/xy S , 
2/ S , 

2/ S , /zD S , and /zB S . The 

deformation variations of the magneto-electro-elastic plate 

due to external load, 0( , ) sin / yP x y P y L  , applied on the 

top surface with magnitude 0 1 2 N/mP   are presented in Fig. 

3 at the location 0 0( , ) ( / 2, / 4)xx y L S . Fig. 3(a)-(h) are the 

variations of the elastic displacements components ( , )w x y  

and 0 0( , , )yu x y z , electric potential 0 0( , , )x y z , magnetic 

potential 0 0( , , )x y z , electric displacement zD , magnetic 

displacement zB , the normal stress components 

11 0 0( , , )x y z  and 2 0 0( , , )2 x y z  along the thickness 

direction with boundary condition to be simply-supported 

around four edges. From these figures, we can obviously 

observe the interactive behavior between the piezoelectric, 

piezomagnetic and magnetoelectric effects for a 

magneto-electro-elastic (MEE) plate under mechanical 

applied load. If the MEE plate is assumed to be very thin, the 

deformation variations for both the electric and magnetic 

potentials reveal a quadratic dependence on the thickness 

variable, however, for the other related quantities such as 

shear deformations, electric and magnetic displacements as 

well as the stress distributions, linear dependence can be still 

detected.  

From now on, the bi-layered BaTiO3-CoFe2O4 laminate 

working as a magneto-electro-elastic plate will be discussed 

based on the Kirchoff hypothesis and the thin-plate theory. 

The simplified governing equation, Equation (1), will be 

examined subjected to various kinds of surface applied load, 

and the deformation behavior with different boundary 

conditions imposed on the plate will also be inspected. Due to 

the simplicity of the proposed model, the higher mode 

response can be easily performed; therefore, the deformation 

variation of the MEE plate with respect to different mode 

numbers will be carried out as a reference. 

The dimensions of the MEE plate is set to be 

1 *1 *0.05m m mx yL L H    unless otherwise mentioned, 

however, any kind of dimensions can be applied as long as the 

span-to-thickness ratio is satisfying the requirement for 

thin-plate theory, i.e., / 10xL H  . The plate surfaces are 

assumed to be traction free except on the top or bottom 

surface, on which a z-direction surface load is applied. The 

external load can be of any type possibly occurs in the study 

of MEE plate, however, in order to observe the variation of 

the deformations, three commonly seen static forces are 

performed in this paper. They are 

(1) uniform load, i.e., 0( , )  P x y P ,  

(2) distributed load, i.e., 0( , ) ( ) ( )  M NP x y P X x Y y  and 

(3) concentrated load, i.e., 0 0 0( , ) ( - , - )  P x y P x x y y . 
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Fig. 3. Variations of the elastic displacements, electric 

potential, magnetic potential, electric displacement, magnetic 

displacement and normal stress components along the 

thickness direction for a two-layered magneto-electro-elastic 

BaTio3-CoFe2O4 plate caused by external loading on the top 

surface with all edges simply-supported. 

 

The geometric boundary conditions imposed on the MEE 

plate can be any one of the combinations for free, clamped 

and simply-supported edges; however, in this study, only the 

boundary conditions of simply-supported around, clamped 

around and cantilever plates are conducted as numerical 

examples. It should be noted that the deformation responses 

for the MEE plate under static loads will be calculated at a 

fixed horizontal coordinate 0 0( , )x y , however, due to the 

different plate characteristic with respect to different 

boundary conditions, the horizontal coordinates will be 

various according to the corresponding boundary conditions. 

That is, for SSSS plate location is chosen to be at 

0 0( , ) (0.5 ,0.5 )x yx y L L , for CCCC plate at 

( , ) (0.5 ,0.5 )0 0 x yx y L L  and for CFFF plate at 

0 0( , ) ( ,0.5 )x yx y L L . 

Fig. 4 (a)-(d) are the deformation variation of electric 

potential, magnetic potential, electric displacement and 

magnetic displacement for the laminated BaTiO3-CoFe2O4 

MEE plate with simply-supported around edges and surface 

distributed load sin( / )sin( / )x yP x L y L    with respect 

to various volume fraction of BaTiO3. As it can be observed, 

the concavity for the pure piezoelectric BaTiO3 plate 

(v.f.=100%) is uniquely different from the other MEE 

laminates with a much higher magnitude. Although the 

dependence with respect to z  variable remains quadratic, the 

electric potential for the MEE lamination with volume 

fraction other than 100% reveals a negative sign along the 

thickness direction instead of a positive one in the pure 

BaTiO3 case. However, the magnitudes placed in order are 

25%, 75% and 50%, 0% for the pure piezomagnetic CoFe2O4 

case stands zero with no piezoelectric effect due to the applied 

load, which is quite reasonable. As for the magnetic 

potentials, quadratic relation can also be verified and the 

concavity for each case seems to be consistent. The maximum 

magnitude occurs in the 25% laminate followed by the 75%, 

50% and 0% cases, 100% for pure piezoelectric BaTiO3 case 

stays nil with piezomagnetic effect being vanished. 

 

 

 
 

Fig. 4-1. Variation of (a) electric potential (b) magnetic 

potential for the lamination MEE plate with simply-supported 

BCs under surface distributed load. 
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Fig. 4-2. Variation of (c) electric displacement (d) magnetic 

displacement for the lamination MEE plate with 

simply-supported BCs under surface distributed load. 

 

For the MEE laminate presented in Fig. 4, the electric and 

magnetic displacements, also called fluxes, can be found to be 

linearly dependent on the z variable and the slope varies 

slightly with respect to the volume fraction of the MEE plate. 

However, if we near watch the magnitudes, we can find that 

all of them are pretty slim. This is due to the nature of the 

material parameter itself, also because of the close-circuit 

restriction we impose on the model. Nevertheless, if the 

electric and magnetic boundary conditions are chosen 

otherwise, the magnitudes for electric and magnetic 

displacements may be changed in a different way. 

Whatsoever, in the present study, only the close-circuit MEE 

thin plate is considered, therefore the author hereafter leave 

out all the presentations and discussions for the electric 

displacement and the magnetic displacement due to their 

insignificant effects. 

Since the deformation variations for the laminate MEE 

plates with clamped-around edges and under uniform applied 

load 21 N/mP   are quite similar to those behaviors 

presented in Fig. 4, the author therefore skip these two case 

and directly go to the cases for the cantilever laminate and 

fibrous MEE plate. Also the deformation variations for the 

electric and magnetic displacements are neglected due to their 

small magnitudes both approaching to zero.  

Fig. 5 (a)-(b) are the deformation variation of electric 

potential, magnetic potential versus volume fraction for a 

cantilever laminated BaTiO3-CoFe2O4 plate subjected to unit 

impulse force acting on the location 0 0( , )x y , i.e., 

0 01 ( - , - )  P x x y y   . The deformation behavior of a 

cantilever MEE plate is quite similar to the corresponding one 

of a simply-supported MEE plate except for the concavity. 

Owing to the different characteristics of MEE plate with 

different boundary conditions and subjected to different types 

of applied load, the sign change on the concavity is reasonable 

and expected. 

 

 

 
Fig. 5. (a)-(b) Deformation variation of electric potential and 

magnetic potential versus volume fraction for a cantilever 

laminated BaTiO3-CoFe2O4 square plate subjected to unit 

impulse force acting on the location 0 0( , )x y , i.e., 

0 01 ( - , - )  P x x y y   . 

 

The deformation variation of electric potential and 

magnetic potential for the 50% laminated BaTiO3-CoFe2O4 

MEE plates subjected to various loads with all edges 

simply-supported are demonstrated in Fig. 6 (a)-(b). And the 

corresponding deformation variations for the laminate MEE 

composites with all edges clamped are depicted in Fig. 7 

(a)-(b). Followed by Fig. 8 (a)-(b), the same illustrations for 

the MEE cantilever plates are provided. As we can see from 

these figures, the concentrated applied load always stimulate 

much stronger deformation as we expected and followed by 

the distributed applied load, uniform applied load seems to be 
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less operative. 

 
Fig. 6. (a)-(b) Deformation variation of electric potential and 

magnetic potential for the 50% laminated BaTiO3-CoFe2O4 

MEE plate subjected to various loads with all edges 

simply-supported. 

 
Fig. 7. (a)-(b) Deformation variation of electric potential and 

magnetic potential for the 50% laminated BaTiO3-CoFe2O4 

MEE plate subjected to various loads with all edges 

simply-supported. 

 

Fig. 8. (a)-(b) Deformation variation of electric potential and 

magnetic potential for the 50% laminated BaTiO3-CoFe2O4 

MEE cantilever plate subjected to various loads. 

 

Finally, in order to see the influence of mode orders, the 

deformation variation of electric potential and magnetic 

potential versus mode number for the MEE laminate under 

certain applied load are given in Fig. 9 (a)-(b) with all edges 

simply-supported, in Fig. 10 (a)-(b) with all edges clamped, 

and in Fig. 11 (a)-(b) for the cantilever plate. It should be 

noted that some of the mode orders contributes nothing on the 

plate deformations because of maybe the symmetry of the 

mode shape or the location we calculate at. 

 

 
Fig. 9. (a)-(b) Deformation variation of electric potential and 

magnetic potential versus mode number for the 50% 

laminated BaTiO3-CoFe2O4 MEE simply-supported plate 

subjected to sinusoidal loading. 

 

 
Fig. 10. (a)-(b) Deformation variation of electric potential 

and magnetic potential versus mode number for the 50% 

laminated BaTiO3-CoFe2O4 MEE clamped plate subjected to 

sinusoidal loading. 
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Fig. 11. (a)-(b) Deformation variation of electric potential 

and magnetic potential versus mode number for the 50% 

laminated BaTiO3-CoFe2O4 MEE cantilever plate subjected 

to sinusoidal loading. 

IV. CONCLUSION 

The closed form solutions for the bending problem of a 

bi-layered BaTiO3-CoFe2O4 composite are derived based on a 

new invented governing equation for magneto-electro-elastic 

(MEE) rectangular thin plate, in particular, the elastic 

displacements, electric potential and magnetic induction for a 

magneto-electro-elastic (MEE) laminate are implemented 

analytically. 

It has been shown that the material coefficients for the 

MEE constituent vary a lot according to the volume-fraction 

of BaTiO3 it contains. The deformation variations for the 

MEE thin plate with closed-circuit electric restriction are 

evaluated with respect to various boundary conditions, and 

the effects of the volume-fractions are investigated in detail. It 

can be found that the shear deformation is linearly dependent 

on the transverse deformation, whereas the electric and 

magnetic potential are both of quadratic variation along the 

thickness direction. In addition, the deformation behavior for 

a single phase material can be found to be quite different from 

the multiphase one in either the magnitude or the sign it is 

induced by. 

The present study provides some commonly seen examples 

for the magneto-electro-elastic (MEE) rectangular thin plate 

under the action of 3 kinds applied loads, and offers the 

discrepancy on the deformation variation of electric potential 

and magnetic induction with respect to various typical 

boundary conditions. This work proposed a much easier and 

systematic way to seek for the analytic solutions for the 

deformation characteristics of a bi-layered MEE thin plate, 

and should be of interest to someone devoted on the practice 

of structure design with the fully coupled medium. 
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